If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50t=600t^2
We move all terms to the left:
50t-(600t^2)=0
determiningTheFunctionDomain -600t^2+50t=0
a = -600; b = 50; c = 0;
Δ = b2-4ac
Δ = 502-4·(-600)·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50}{2*-600}=\frac{-100}{-1200} =1/12 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50}{2*-600}=\frac{0}{-1200} =0 $
| 17q−16q=14 | | 196=7(8-5a) | | t23=12 | | 94=d+21 | | (-6,y+6-3y=15) | | -4n-6(n-7)=122 | | 460/5=11x | | -5(1-8b)+1=316 | | -91=7n | | 0.00228=0.05x-x^2 | | 26^9^x+5=1 | | -5.4/t=1.8,t=0 | | -12j-19=-13j | | x+56+66=180 | | 132=7x+7x+6 | | 29^2-5a+3=0 | | 132=7x+7x=6 | | 4x2–5=75 | | 33x+33=33+25 | | x+64+60=180 | | 2x+3.5=24.5 | | 4(x-3)=4.65 | | 4x^2–5=75 | | 19-14m=-17-12m-4 | | 7p-p-3p-p+4p+1=19 | | 3(k–5)=3 | | 9x-6x-3x+2x+2=14 | | -5.4/t1.8,t=0 | | 32y^2−12y−9=0 | | 4x-5=x2+3 | | –5y−–19y+–16y+5=–3 | | -18+3x=15 |